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REGIONS OF STABILITY OF FEL OSCILLATORS

B. Levush and T. M. Antonsen, Jr.

Laboratory for Plasma and Fusion Energy Studies
University of Maryland

ABSTRACT

The stability of single mode operation of FEL oscillators is

investigated. We consider two models of an untapered FEL oscillator.

The first model is called the klystron model. In it the FEL interaction

occurs at two points: a prebunching point and an energy extraction point.

In this model the nonlinear electron dynamics are solvable exactly

leading to a complex delay equation for the wave fields. The stability

of single mode operation can then be determined easily as a function of

single pass gain, energy mismatch-frequency, and the difference between

the group velocity of the radiation and the beam velocity. The second,

more realistic model has a distributed interaction region of finite

length. Stability of single mode operation in this device must be

determined numerically. The results of the models in low gain regime

will be compared and the parameter regimes where stable-single mode

operation is possible will be determined.

I. INTRODUCTION

Many applications of free electron lasers require a coherent single

frequency output. However, the FEL interaction region is large and in

oscillators many modes of the interaction cavity are linearly unstable.

Therefore it is desirable to know under what circumstances nonlinear

operation in a single frequency mode will occur. This problem has been

considered previously by a number of authors. 1'2 '3  Our work closely

parallels that of Refs. (I) and (2). Specifically, we consider two cases

in which reduction in computation is achieved by considering a model

system or by exploiting a small parameter.

We begin with the one pendulum equation describing the space and

time evolution of the particle energy and phase and signal field in an

FEL,
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where ' and 6y are a particle phase and energy mismatch, and A(z,t) is

the complex amplitude of the signal field. The definition of the other

quantities appearing in Eqs. (l)-(3) follows: w and kz are the wave

frequency and wavenumber, j is an effective current density, v (y ) is
z r

the mean beam speed, for the case considered here y is a constant and

gives the energy of a particle exactly resonant with the carrier signal.

The undulator parameter is defined by

qA(z)
2

mc Yr

Since we are considering oscillators it is necessary to augment the

wave equation (3) with a boundary condition describing the return path of

the radiation,

A(z-O, t) - RA(z-L, t-L/vg) , (4)

where R is the combined reflection coefficient for the two mirrors, L is

the separation between mirrors and v gk c 21 is the group velocity of theg r
radiation. (Note that R is a complex number.)

We now make two transformations to Eqs. (l)-(3). The first is

simply to normalize all the variables. Specifically we introduce,
p = sy 1W (5a)

2 2 1)3/2 (

r

2
a(wL/c) K (5b)
mc (y _ )3/2

zr

and

z/ T v t/L. (50)g
Second, we define a new coordinate system moving with the mean beam speed

- (6a)

S- T - , , (6b)

where B-v 1v i s the ratio of the radiation group velocity to the mean

beam speed. With these changes the governing equations become,

IRMA di
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21[ (1-6, -$ + a- a - X(& ') ,~-i (9)

with the boundary condition

a(0,') - Ra(1, V - (I+8)) • (10)

The function X(E)=Aw (z)/Awo gives the profile of the coupling coefficient

between particles and fields. We note that the system of equations (7)-

(10) has four dimensionless parameters: the normalized beam current

--f 2-D K 32

IA  c 8 2 (Y  3/2
z r

where IAmc3/q-1.7x104 Amps, the relative velocities 8,, the reflection

coefficient R, and the injection momentum p('=O).

In the remainder of this paper we will consider two ways this system

can be further simplified.

II. XLYSTRON MODEL

In the klystron model 2'4 one assumes a specific form for the profile

of the coupling coefficient,

x(e) - 6(V) + a (Z - 1)

Physically, this models an FEL with two short interaction regions

separated by a drift space. In the first interaction region, C'-0,

particles receive a kick in energy (p) depending on their entrance phase

and the strength of the signal field a(F-0,'). The particles then bunch

in phase as they traverse the drift space producing a coherent current

source which amplifies the radiation at the second interaction region.

The equations of motion describing this process can be solved exactly

yielding an expression for the output radiation field for a given input

field. Inserting this expression in the feedback boundary condition

produces the following two time delay equations,

Sa(O,T') Rfa(0, T'-2) + i p (O a(O, T- - (1+6*))n , (11)

where Ja(O, T" - (1+8,)) 11

-" laO, T- - (1+.))I
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with J, a Bessel function.

Physically, the first term on the right-hand side of Eq. (11)

represents the decay of the circulatng radiation which in our variables

takes two units of time to complete one circuit of the resonator. The

second term describes the amplification of the radiation due to the beam.

Tie delay in this case is (1-f$), the "one" coming from the return trip

of the radiation and the "8," coming from the time the particles take to-

traverse the drift region.

For equal beam and radiation speeds (8,=1) Eq. (11) becomes a

simple return map in which each time slice of the radiation field evolves

independently of its neighbor depending only on the value of the

radiation field two units of time in the past. This would also be the

case if we had set $,=l in Eq. (9) without introducing the klystron

model. The function n(jaI) in this case would be replaced by some other

transcendental function. However, as shown by Fiegenbaum5 the behavior

of all such return maps with quadratic maxima is universal. In

particular, depending on beam current the sequence of field values

a(O,-r-2n) may converge to a single value (single mode operation), or a

periodic sequence, or for sufficiently high current a chaotic sequence.

We note that the return map model is only appropriate for beam currents

low enough to produce a sequence of constant values for a(O,T). This is

because even if the sequence converges to a period two or higher orbit

the function a(0,T) must necessarily have a discontinuity. In which

case, no matter how small 1-80* is since it multiplies the time derivative

of a(0,r) in Eq. (9) it can not be neglected. Thus, the two time delay,

Eq. (11), is useful in that it allows for an assessment of the effects of

finite slippage, i.e., 1-8S**0.

The stability of a single frequency nonlinear mode is determined as

follows. We write the field in terms of an equilibrium value and a

perturbation

a(T) - exp(-iw 0 )(a0 + 6a(T)]

where a0 is the constant amplitude of the single mode with frequency w0

and Sa(r)-exp(-iWT) is the perturbation. The frequency and amplitude in

equilibrium satisfy 21w 0 i(
2i A B

we T f laol )] c
where 0 0-(w/2)+0+6,)w 0-P(O). Thus, for a given current I, reflectivity
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R, and injection momentum p(O), Eq. (12) is a transcendental relation

determining the field amplitude a0 and frequency w0 " The equilibrium

relation is readily solved in the low gain regime where both I and v-1-R

are small. One finds w 0o-n+6W with

cose0 n(1ao) a nd T sine0 •laol)

Thus, the frequency is essentially that of a cavity mode with a small

shift proportional to the beam current, and the field amplitude is

determined by the gain and the ratio of the transmission coefficient (v)

to the current.

Linearizing the delay equation results in the following dispersion

relation for the frequency w of the perturbation

{(e-21w-l) - ZR[(l+g)e ik-111 x {(e-21w-l) - Re 1}
e_.,(13)

* + Z2I+g)eik- ik(e k-l) 0

01C+~ while -1 0n
where k=(O -1)w, g-a 0/h(ao)0/aao, and Z-1/2(rRle ), while ZR and ZI

are the real and imaginary part of Z, respectively.

In the low gain regime IZ<<l to lowest order Eq. (13) gives
(e-21w _ ) = 0

and the frequency of the perturbation is also approximately that of a

cavity mode

w rn(n * 0).

4. The growth or damping of the mode is determined in next order by the

equation ik ik ik
^' A 2 0 n -2n _ ] n
w - cosew[2+g)e 2] + (e 1)(+g)e - ] 0

-2iw
where w-Ce -1)/ZI with k n-nw1(B-I). Regions of stability in the k

vs. cos6 0 plane are shown in Figs. (1) for different values of g. For

the equilibrium the average change in momentum Ap is given in the low

gain regime by,

Ap - - coseolaoI2n(1a1)

Thus, the value of cose 0 determines the dependence of the efficiency on

the injection momentum. The quantity g depends only on aO and is related
to the derivative of the efficiency with respect to the field amplitude,

laol 3CA )

_ 2+g (14)
&P aFO
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The efficiency maximizes for g=-2 and coseo=l.

The plots in Fig. (1a) are periodic in k with period 2w (only the

fundamental period is shown). Thus, for an irrational value of (8-1),

knmod( 2 r) will eventually assume any value. In the klystron model,

therefore, only equilibria with efficiency sufficiently maximized with

respect to cos8 0 (injection momenta) will be stable. Periodicity with

respect to k is an artifact of the klystron model, and we may not expect

this result to hold more generally.

A second more important restriction is noted by examining Fig. (Ib)

where g<-2, corresponding to a field amplitude in equilibrium that

exceeds the value which maximizes efficiency. There it is seen that no

single frequency equilibria are stable.

The preceeding discussion applied in the low gain regime where both

the beam current I and transmission coefficient v=(I-R) are small. In

this case the stability boundaries depend only on the ratio I/v through

the field amplitude a0 .

In the high gain regime an additional parameter measuring the

current is introduced, IZI=(1/2)R~n. Stability boundaries in the

cosO0 - IZiplane are shown in Fig. (2) for the high gain case. The large

triangle in the upper left is the region of parameter space allowed by

the eqiuilibrium condition. The low gain results correspond to the region

of the plane with small IZi. As can be seen in Fig. (2) where g>-2 the

stable operating regime occupies the small triangle in the upper left.

The stable range of cosO 0 values decreases as current is raised. Above a

critical current no single mode operation is possible. For g<-2 we again

find no regime where stable operation is possible.

III. MULTIMODE SIMULATIONS

We now drop the klystron model and return to the more realistic case

of a constant coupling coefricient in the interaction region,

XM for 0 < < I

X( ) = 0 otherwise - 1

To reduce the number of parameters we again assume that the beam current

aid tcriintssion coefficient are small and we are in the low gain regime.

Solution 3f the wave equation in the limit 1+0 will reproduce the vacuum

I,
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cavity modes. Including the current and transmission losses will cause

the complex amplitude of each mode to evolve slowly in time. To treat

this problem mathematically we introduce a two time scale formulation

writing the field amplitude

." [(1-6,)& - To]

where TO is the fast time associated with the time of flight of radiation

through the cavity, w --n is the frequency, and T is the slow time

associated with the growth or decay of the modes.

The computational savings is achieved because the field is nearly

periodic with period T 0=2. Thus, an ensemble of particles can be

launched with T O in the range 0<T0<2 , the currents computed, and the wave

fields advanced by a time T of the order of the growth time. This

reduction has been achieved similarly in other FELI and gyrotron

simulations .6-7

The governing system of equations is found to be

"Inmu an ) , (16)
nn

(17)

where -n= +Fn[((-B *)&-r01 with initial conditions T O  [0,2],

*(0) C (0,27r], and P(0)PinJ for the particles. The wave amplitudes are

advanced on the time scale T
S

Ba
n -1 a iin
n + - ( )<<e >> (1)

where

T m TV,
S

and the double average is given by

27rd 0 2 dT 0  1

0 2w 0 0

A sample run is shown in Fig. (3) where the magnitude of the amplitudes

of the modes are shown at several times. The injection momentum and

current to damnping ratio were selected so that in the case of single mode

operation the n--3 mode would be the most efficient. At early times one

see-; that the a-1 node grows r.astest which tiS consistent with small
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signal theory. As time goes by the system nonlinearly evolves toward a

single mode (the n=O mode). At the time of writing of this paper the

code was still running so we can not report whether a final single mode

solution is reached. However, we hope to examine parameter space and

determine the regimes of single mode operation in the future.

IV. CONCLUSIONS

We have outlined two models capable of describing multimode effects

in FEL oscillators. In the klystron model the wave field satisfies a two

time delay equation. In the low gain regime single mode operation is

achieved only at a field value less than that which maximizes the

efficiency and then only for modes for which the efficiency has been

nearly maximized with respect to mismatch. In the high gain regime the

band of stable mismatch frequencies decreases as current increases. In

the more realistic dLstributed interaction model one must resort to

numerical simulation. However, the computation time and parameter space

can be greatly reduced in the low gain regime.
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FIGURE CAPTIONS

Fig. 1. Stability regions in the low gain regime in cosO 0 versus k

nr(B -1) plane: (a) g - 1.95, (b) g - -2.01.

Fig. 2. Stability regions in the high gain regime in cos 0 versus Z
* a 0

1/2(IRn) plane.

Fig. 3. Sample of the multimode simulation with 21 modes,

8 1.2, (1/v) = 112.74, and Pinj 3.258; (a)

T- 1.2; (b) = 4.8; (c) T s 18; (d) T n 74.4.
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